Practice Problems - Perfect Competition

Dr. Amy McCormick Diduch

1. Use the graph below to answer the following questions:
a. What is the current market price for this product?
b. Mark on the graph the profit-maximizing output level for this firm.
c. Is this firm making a profit or losing money? Shade in the area of profit or loss.
d. Calculate the profit for this firm.
e. Suppose the market price fell to $\$ 125$. What should this firm do?

2. The table below presents cost information for a hypothetical perfectly competitive firm. Calculate Average Total Cost, Average Variable Cost and Marginal Cost for this firm. (ATC = TC/Q, AVC = TVC/Q, MC = $\Delta T C / \Delta Q$).

\mathbf{Q}	TVC	TC	ATC	AVC	MC
0	0	30			
1	8	38			
2	14	44			
3	17	47			
4	18	48			
5	23	53			
6	33	63			
7	47	77			
8	65	95			
9	90	120			
10	130	160			

a. What is this firm's total fixed cost?
b. What is the profit maximizing level of output if $\mathrm{P}=\$ 10$?
c. Calculate the firm's profit (or loss) when $\mathrm{P}=$
\$10. [Note: profit = Q* (P - ATC)]
d. What is the LOWEST price at which this firm will produce a positive quantity of output?
3. You run a small repair shop and have estimated that in the short run, your monthly costs can be described by the equation $T C=800+2 Q^{2}+4 Q$.
Your marginal cost curve can be expressed as $M C=4 Q+4$
Your average total costs can be expressed as ATC $=800 / Q+2 Q+4$
The price for a typical repair job is $\$ 200$.
What is your profit-maximizing number of repairs each month?
What is your monthly profit or loss?
4. Sketching the quantity decision for perfect competition

Sketch a graph of a perfectly competitive firm with "typical" cost curves in which the firm is losing money but chooses to produce q^{*} rather than shutting down. Illustrate the firm's losses.

ANSWERS: Do not peek until you have worked through all of the problems!

1. Use the graph below to answer the following questions:
a. What is the market price for this product? \$200
b. Mark on the graph the profit-maximizing output level for this firm.
Q = 10
c. Is this firm making a profit or losing money? Green shading shows profit (P>ATC).
d. Calculate the profit for this firm.

Profit $=Q^{*}(P-A T C)$ $=10 *(200-150)=10 * 50=\$ 500$
e. Suppose the market price fell to $\$ 125$. The firm would reduce quantity to 8 . Price is still above AVC; the firm would lose money but would not shut down.

2. The table below presents cost information for a hypothetical perfectly competitive firm. Calculate Average Total Cost, Average Variable Cost and Marginal Cost for this firm. (ATC = TC/Q, AVC = TVC/Q, MC = $\Delta T C / \Delta Q$).

\mathbf{Q}	TVC	TC	ATC	AVC	MC
0	0	30			
1	8	38	38.0	8.0	8
2	14	44	22.0	7.0	6
3	17	47	15.7	5.7	3
4	18	48	12.0	4.5	1
5	23	53	10.6	4.6	5
6	33	63	10.5	5.5	10
7	47	77	11.0	6.7	14
8	65	95	11.9	8.1	18
9	90	120	13.3	10.0	25
10	130	160	16.0	13.0	40

a. What is this firm's total fixed cost?

Fixed cost = \$30. (Calculate this as TC - TVC or take note that when $\mathrm{Q}=0, \mathrm{TC}=\$ 30$)
b. What is the profit maximizing level of output if $P=\$ 10$?

Set $P=M C$. When $P=10$, should choose $Q=6$
c. Calculate the firm's profit (or loss) when $\mathrm{P}=\$ 10$. [Note: profit $\left.=Q^{*}(P-A T C)\right]$
Profit $=6^{*}(10-10.5)=\mathbf{- 3}$. The firm is losing money.
d. What is the LOWEST price at which this firm will produce a positive quantity of output? The firm will produce q^{*} as long as $P \geq A V C$. The minimum point of $A V C$ is 4.5 , so the lowest possible price at which the firm will produce q^{*} is $\$ 4.5$.
3. $T C=800+2 Q^{2}+4 Q$.
$M C=4 Q+4$
$A T C=800 / Q+2 Q+4$
$\mathrm{P}=\$ 200$.
You maximize profits by choosing the quantity at which the price (200) equals marginal cost (4Q + 4).
$4 Q+4=200$
$4 \mathrm{Q}=200-4=196$
$Q=196 / 4=49$ repairs per month

Profit $=Q(P-A T C)$

Find ATC by plugging your profit-maximizing Q into the ATC equation above:
ATC $=800 / 49+2(49)+4=118.33$

Profit $=49$ * (200-118.33) $=\mathbf{\$ 4 0 0 2}$

Note: you can also find profit by calculating Total Revenue - Total Cost. TR = price * quantity = 200 * 49. Calculate TC from the equation above. You will get the same result.
4. Sketching the quantity decision for perfectly competitive firm losing money:

