Practice Problems – Perfect Competition

Dr. Amy McCormick Diduch

- 1. Use the graph below to answer the following questions:
 - a. What is the current market price for this product?
 - b. Mark on the graph the profit-maximizing output level for this firm.
 - c. Is this firm making a profit or losing money? *Shade in* the area of profit or loss.
 - d. Calculate the profit for this firm.
 - e. Suppose the market price fell to \$125. What should this firm do?

2. The table below presents cost information for a hypothetical perfectly competitive firm. **Calculate** Average Total Cost, Average Variable Cost and Marginal Cost for this firm. (ATC = TC/Q, AVC = TVC/Q, MC = ΔTC/ΔQ).

Q	TVC	тс	ATC	AVC	MC
0	0	30			
1	8	38			
2	14	44			
3	17	47			
4	18	48			
5	23	53			
6	33	63			
7	47	77			
8	65	95			
9	90	120			
10	130	160			

a. What is this firm's total fixed cost?

b. What is the profit maximizing level of output if P = \$10?

c. Calculate the firm's profit (or loss) when P =

\$10. [Note: profit = Q * (P - ATC)]

d. What is the LOWEST price at which this firm will produce a positive quantity of output?

3. You run a small repair shop and have estimated that in the short run, your monthly costs can be described by the equation $TC = 800 + 2Q^2 + 4Q$.

Your marginal cost curve can be expressed as MC = 4Q + 4Your average total costs can be expressed as ATC = 800/Q + 2Q + 4The price for a typical repair job is \$200.

What is your profit-maximizing number of repairs each month? What is your monthly profit or loss?

4. Sketching the quantity decision for perfect competition Sketch a graph of a perfectly competitive firm with "typical" cost curves in which the firm is losing money but chooses to produce q* rather than shutting down. Illustrate the firm's losses.

ANSWERS: Do not peek until you have worked through all of the problems!

- 1. Use the graph below to answer the following questions:
 - a. What is the market price for this product?
 \$200
 - b. Mark on the graph the profit-maximizing output level for this firm.
 Q = 10
 - c. Is this firm making a profit or losing money? *Green shading shows profit* (P>ATC).
 - d. Calculate the profit for this firm.
 Profit = Q * (P ATC) = 10 * (200-150) = 10*50 = \$500
 - Suppose the market price fell to \$125. The firm would reduce quantity to 8. Price is still above AVC; the firm would lose money but would not shut down.

 The table below presents cost information for a hypothetical perfectly competitive firm. Calculate Average Total Cost, Average Variable Cost and Marginal Cost for this firm. (ATC = TC/Q, AVC = TVC/Q, MC = ΔTC/ΔQ).

Q	TVC	тс	ATC	AVC	МС
0	0	30			
1	8	38	38.0	8.0	8
2	14	44	22.0	7.0	6
3	17	47	15.7	5.7	3
4	18	48	12.0	4.5	1
5	23	53	10.6	4.6	5
<mark>6</mark>	<mark>33</mark>	<mark>63</mark>	<mark>10.5</mark>	<mark>5.5</mark>	<mark>10</mark>
7	47	77	11.0	6.7	14
8	65	95	11.9	8.1	18
9	90	120	13.3	10.0	25
10	130	160	16.0	13.0	40

a. What is this firm's total fixed cost?

<mark>Fixed cost = \$30</mark>. (Calculate this as TC – TVC or take note that when Q=0, TC = \$30)

b. What is the profit maximizing level of output if P = \$10? Set P = MC. When P=10, should choose **Q = 6**

c. Calculate the firm's profit (or loss) when P = \$10. [Note: profit = Q * (P - ATC)] Profit = 6 * (10 - 10.5) = -**3**. The firm is losing money.

<mark>d.</mark>What is the LOWEST price at which this firm will produce a positive quantity of output? <mark>The firm will</mark>

produce q* as long as P≥AVC. The minimum point of AVC is 4.5, so the lowest possible price at which the firm will produce q* is \$4.5.

3. TC = $800 + 2Q^2 + 4Q$.

 $\begin{array}{l} \mathsf{MC} = 4\mathsf{Q} + \ 4 \\ \mathsf{ATC} = 800/\mathsf{Q} + 2\mathsf{Q} + 4 \\ \mathsf{P} = \$200. \\ \\ \mathsf{You} \text{ maximize profits by choosing the quantity at which the price (200) equals marginal cost (4\mathsf{Q} + 4). \end{array}$

4Q + 4 = 200 4Q = 200 - 4 = 196 Q = 196/4 = **49** repairs per month Find ATC by plugging your profit-maximizing Q into the ATC equation above: $\frac{\text{ATC}}{\text{ATC}} = 800/49 + 2(49) + 4 = \frac{118.33}{2}$

Profit = 49 * (200 – 118.33) = \$4002

Note: you can also find profit by calculating Total Revenue – Total Cost. TR = price * quantity = 200 * 49. Calculate TC from the equation above. You will get the same result.

4. Sketching the quantity decision for perfectly competitive firm losing money:

