Practice problems: Marginal Analysis

Dr. Amy McCormick Diduch

1. Imagine you have the following information about prices, hourly quantities and costs for a sandwich business in a highly competitive downtown area. The business has very little control over price: competitors are all selling sandwiches for $\$ 8$ each so the business also prices its sandwiches at $\$ 8$. The business will be able to sell any sandwiches it makes at this competitive price.

Fill in the missing values for the sandwich shop using the data in the table. Sketch the marginal revenue and marginal cost curves. How many sandwiches should they sell to maximize profit? Explain using the table and the graph.

Quantity	Price	Total Revenue $\left(P^{*} \mathrm{Q}\right)$	Marginal Revenue $\Delta T R / \Delta \mathrm{Q}$	Total Cost	Marginal Cost $\Delta T C / \Delta Q$	Profit TR-TC
0	8			2		
1	8			3.5		
2	8			7		
3	8			12.5		
4	8			20		
5	8			29.5		
6	8			41		
7	8			54.5		
8	8			70		

Marginal Revenue and Marginal Cost

2. Suppose the demand curve for haircuts from a barber can be described as $P=30-2 Q$ (implying a marginal revenue curve of $M R=30-4 Q$). The barber's total cost curve is $T C=20+2 Q$ (implying a marginal cost curve of $M C=2$). Find the profit-maximizing quantity of output (at which $M R=M C$). What is the barber's profit at this output level? (Hint: calculate TR and TC at the profit-maximizing output level).

Answers:

1. Marginal cost in the table is calculated as $\Delta T C / \Delta Q$, so the marginal cost of the first sandwich is $(3.5-2) / 1=1.5$. Marginal revenue is calculated as $\Delta T R / \Delta Q$, so the marginal revenue from the first sandwich is $(8-0) / 1=8$. Notice that marginal revenue is constant and equal to the price of the sandwich in this example. Marginal cost is increasing. Profit is highest when the store sells 4 sandwiches per hour. Using marginal analysis, we reach this same conclusion: the $4^{\text {th }}$ sandwich brings extra revenue of $\$ 8$ and costs an extra $\$ 7.50$ to produce but the $9^{\text {th }}$ sandwich would bring less in revenue than it costs to produce.

Quantity	Price	Total Revenue	Marginal Revenue	Total Cost	Marginal Cost	Profit
0	8	0		2		-2
1	8	8	8	3.5	1.5	4.5
2	8	16	8	7	3.5	9
3	8	24	8	12.5	5.5	11.5
4	8	32	8	20	7.5	12
5	8	40	8	29.5	9.5	10.5
6	8	48	8	41	11.5	7
7	8	56	8	54.5	13.5	1.5
8	8	64	8	70	15.5	-6

Marginal Revenue and Marginal Cost

2. Set $M R=M C$. So, $30-4 Q=2 \rightarrow 28=4 Q \rightarrow Q=7$

When $Q=7, P=30-2(7)=16$ and Total Revenue $=P * Q=\$ 16^{*} 7=\$ 112$

When $Q=7$, Total Cost $=20+2(7)=34$
Profit $=$ TR - TC $=112-34=\$ 78$

